
OPERATING SYSTEMS

A K CHAKRAVARTHY

Assistant Professor

Information Technology

Aditya Engineering College

Surampalem

Subject: Operating Systems

Topic: Dining philosophers problem

Teaching Methodology: Video lecture

Fig.1. Video lecture

https://www.youtube.com/watch?v=FYUi-u7UWgw

The dining philosopher's problem is the classical problem of synchronization which says that

Five philosophers are sitting around a circular table and their job is to think and eat

alternatively. A bowl of noodles is placed at the center of the table along with five chopsticks

for each of the philosophers. To eat a philosopher needs both their right and a left chopstick.

A philosopher can only eat if both immediate left and right chopsticks of the philosopher is

available. In case if both immediate left and right chopsticks of the philosopher are not

available then the philosopher puts down their (either left or right) chopstick and starts

thinking again.

https://www.youtube.com/watch?v=FYUi-u7UWgw

The dining philosopher demonstrates a large class of concurrency control problems hence it's

a classic synchronization problem.

Five Philosophers sitting around the table

Dining Philosophers Problem- Let's understand the Dining Philosophers Problem with the

below code, we have used fig 1 as a reference to make you understand the problem exactly.

The five Philosophers are represented as P0, P1, P2, P3, and P4 and five chopsticks by C0,

C1, C2, C3, and C4.

The solution of the Dining Philosophers Problem

We use a semaphore to represent a chopstick and this truly acts as a solution of the Dining

Philosophers Problem. Wait and Signal operations will be used for the solution of the Dining

Philosophers Problem, for picking a chopstick wait operation can be executed while for

releasing a chopstick signal semaphore can be executed.

Semaphore: A semaphore is an integer variable in S, that apart from initialization is accessed

by only two standard atomic operations - wait and signal. From the above definitions of wait,

it is clear that if the value of S <= 0 then it will enter into an infinite loop(because of the

semicolon; after while loop). Whereas the job of the signal is to increment the value of S.

Solution : Let value of i = 0(initial value), Suppose Philosopher P0 wants to eat, it will enter

in Philosopher() function, and execute Wait(take_chopstickC[i]); by doing this it holds C0

chopstick and reduces semaphore C0 to 0, after that it execute Wait(take_chopstickC[(i+1)

% 5]); by doing this it holds C1 chopstick(since i =0, therefore (0 + 1) % 5 = 1) and

reduces semaphore C1 to 0

Similarly, suppose now Philosopher P1 wants to eat, it will enter in Philosopher() function,

and execute Wait(take_chopstickC[i]); by doing this it will try to hold C1 chopstick but

will not be able to do that, since the value of semaphore C1 has already been set to 0 by

philosopher P0, therefore it will enter into an infinite loop because of which philosopher P1

will not be able to pick chopstick C1 whereas if Philosopher P2 wants to eat, it will enter in

Philosopher() function, and execute Wait(take_chopstickC[i]); by doing this it holds C2

chopstick and reduces semaphore C2 to 0, after that, it executes Wait(

take_chopstickC[(i+1) % 5]); by doing this it holds C3 chopstick(since i =2, therefore (2

+ 1) % 5 = 3) and reduces semaphore C3 to 0.

Hence the above code is providing a solution to the dining philosopher problem, A

philosopher can only eat if both immediate left and right chopsticks of the philosopher are

available else philosopher needs to wait. Also at one go two independent philosophers can eat

simultaneously (i.e., philosopher P0 and P2, P1 and P3 & P2 and P4 can eat simultaneously

as all are the independent processes and they are following the above constraint of dining

philosopher problem)

The drawback of the above solution of the dining philosopher problem

From the above solution of the dining philosopher problem, we have proved that no two

neighboring philosophers can eat at the same point in time. The drawback of the above

solution is that this solution can lead to a deadlock condition. This situation happens if all the

philosophers pick their left chopstick at the same time, which leads to the condition of

deadlock and none of the philosophers can eat.

